Кавитационный теплогенератор своими руками. Теплогенератор кавитационный для отопления помещения Чертежи втг

Назначение вихревого теплогенератора Потапова (ВТГ), сделанного своими руками, состоит в том, чтобы получить тепло только при помощи электродвигателя и насоса. В основном это устройство используют как экономичный нагреватель.

Схема устройства вихревой теплосистемы.

Так как нет исследований по определению параметров изделия в зависимости от мощности насоса, то будут освещены примерные размеры.

Проще всего делать вихревой теплогенератор из стандартных деталей. Для этого подойдет любой электродвигатель. Чем он будет мощней, тем больший объем воды нагреет до заданной температуры.

Главное это двигатель

Выбирать двигатель нужно в зависимости от того, какое напряжение имеется. Есть много схем, при помощи которых можно подключить к сети 220 Вольт двигатель на 380 Вольт и наоборот. Но это другая тема.

Начинают сборку теплового генератора с электродвигателя. Его надо будет закрепить на станине. Конструкция этого устройства представляет собой металлический каркас, который проще всего сделать из угольника. Размеры надо будет подбирать на месте для тех устройств, которые будут в наличии.

Чертеж вихревого теплогенератора.

Список инструментов и материалов:

  • угловая шлифовальная машинка;
  • сварочный аппарат;
  • электродрель;
  • набор сверл;
  • рожковые или накидные ключи на 12 и на 13;
  • болты, гайки, шайбы;
  • металлический уголок;
  • грунтовка, краска, кисть малярная.
  1. Нарежьте при помощи угловой шлифовальной машинки угольники. Используя сварочный аппарат, соберите прямоугольную конструкцию. Как вариант — сборку можете сделать при помощи болтов и гаек. На конечном варианте конструкции это не скажется. Длину и ширину подберите так, чтобы все детали оптимально разместились.
  2. Вырежьте еще один кусок угольника. Прикрепите его как поперечину с таким расчетом, чтобы можно было закрепить двигатель.
  3. Сделайте покраску рамы.
  4. Просверлите отверстия в каркасе под болты и установите двигатель.

Установка насоса

Теперь надо будет подобрать водяной насос. Сейчас в специализированных магазинах можно приобрести агрегат любой модификации и мощности. На что надо обратить внимание?

  1. Насос должен быть центробежным.
  2. Ваш двигатель сможет его раскрутить.

Установите на раме насос, если надо будет сделать еще поперечины, то изготовьте их либо из уголка, либо из полосового железа такой же толщины, как и уголок. Соединительную муфту вряд ли возможно сделать без токарного станка. Поэтому придется ее где-то заказывать.

Схема гидровихревого теплогенератора.

Вихревой теплогенератор Потапова состоит из корпуса, сделанного в виде закрытого цилиндра. На его концах должны быть сквозные отверстия и патрубки для присоединения к системе отопления. Секрет конструкции находится внутри цилиндра. За входным отверстием должен располагаться жиклер. Его отверстие подбирается для данного устройства индивидуально, но желательно, чтобы оно было в два раза меньше четвертой части диаметра корпуса трубы. Если делать меньше, то насос не сможет пропускать воду через это отверстие и начнет сам нагреваться. Кроме того, начнут интенсивно за счет явления кавитации разрушаться внутренние детали.

Инструменты: угловая шлифовальная машинка или ножовка по металлу, сварочный аппарат, электродрель, разводной ключ.

Материалы: толстая металлическая труба, электроды, сверла, 2 патрубка с резьбой, соединительные муфты.

  1. Отрежьте кусок толстой трубы диаметром 100 мм и длиной 500-600 мм. Сделайте на ней внешнюю проточку примерно 20-25 мм и в половину толщины трубы. Нарежьте резьбу.
  2. Сделайте из такого же диаметра трубы два кольца длиной 50 мм. Нарежьте внутреннюю резьбу с одной стороны каждого полукольца.
  3. Из такой же толщины плоского металла, что и труба, сделайте крышки и приварите их с той стороны колец, где нет резьбы.
  4. Сделайте в крышках центральное отверстие: у одной по диаметру жиклера, а у другой по диаметру патрубка. С внутренней стороны крышки, где стоит жиклер, сверлом большего диаметра сделайте фаску. В результате должна получиться форсунка.
  5. Подключите теплогенератор к системе. Патрубок, где стоит форсунка, присоедините к насосу в отверстие, из которого вода подается под давлением. Ко второму патрубку подсоедините вход системы отопления. Выход из системы соедините с входом насоса.

Вода под давлением, которое создаст насос, будет проходить через форсунку вихревого теплогенератора, который вы делаете своими руками. В камере она начнет нагреваться за счет интенсивного перемешивания. Потом ее подадите в систему для обогрева. Чтобы регулировать температуру, поставьте за патрубком шаровое запирающее устройство. Прикройте его, и вихревой теплогенератор будет дольше гонять воду внутри корпуса, а значит, температура в нем начнет подниматься. Примерно так работает этот нагреватель.

Пути повышения производительности

Схема теплового насоса.

В насосе происходят потери тепла. Так что вихревой теплогенератор Потапова в таком варианте имеет существенный недостаток. Поэтому логично погруженный насос окружить водяной рубашкой, чтобы его тепло тоже шло на полезное нагревание.

Внешний корпус всего устройства сделайте чуть больше диаметра имеющегося в наличии насоса. Это может быть либо готовая труба, что желательно, либо сделанный из листового материала параллелепипед. Его размеры должны быть такими, чтобы внутрь входил насос, соединительная муфта и сам генератор. Толщина стенок должна выдерживать давление в системе.

Для того чтобы потери тепла снизились, сделайте вокруг корпуса устройства теплоизоляцию. Защитить ее можно кожухом, сделанным из жести. В качестве изолятора используйте любой теплоизоляционный материал, выдерживающий температуру кипения жидкости.

  1. Соберите компактное устройство, состоящее из погружного насоса, соединительного патрубка и теплогенератора, который вы собрали своими руками.
  2. Определитесь в его габаритах и подберите трубу такого диаметра, внутри которой все эти механизмы легко бы разместились.
  3. Сделайте крышки с одной и другой стороны.
  4. Обеспечьте жесткость крепления внутренних механизмов и возможность насосу качать через себя воду из полученного резервуара.
  5. Сделайте входное отверстие и закрепите на нем патрубок. Насос должен своим забором воды располагаться внутри как можно ближе к этому отверстию.

На противоположном конце трубы приварите фланец. С его помощью будет крепиться через резиновую прокладку крышка. Чтобы проще монтировать внутренности, сделайте несложный легкий каркас или скелет. Внутри него соберите устройство. Проверьте подгонку и герметичность всех узлов. Вставьте в корпус и закройте крышкой.

Подключите к потребителям и проверьте все на герметичность. Если протечек нет, включите насос. Открывая и закрывая кран, который находится на выходе из генератора, отрегулируйте температуру.

Утепление генератора

Схема подключения теплогенератора к системе отопления.

Сначала надо сделать кожух утеплителя. Возьмите для этого лист оцинкованной жести или тонкого алюминия. Вырежьте из него два прямоугольника, если будете делать кожух из двух половинок. Или один прямоугольник, но с таким расчетом, что в нем после изготовления полностью поместится вихревой теплогенератор Потапова, который собрали своими руками.

Гнуть лист лучше всего на трубе большого диаметра или использовать поперечину. Положите на нее вырезанный лист и прижмите сверху рукой деревянный брусок. Второй рукой нажмите на лист жести так, чтобы образовался по всей длине небольшой изгиб. Продвиньте немного заготовку и снова повторите операцию. Делайте так до тех пор, пока не получится цилиндр.

  1. Соедините его при помощи замка, который используют жестянщики для водосточных труб.
  2. Сделайте крышки для кожуха, предусмотрев в них отверстия для подключения генератора.
  3. Обмотайте теплоизоляционным материалом устройство. При помощи проволоки или тонких полосок жести зафиксируйте изоляцию.
  4. Поместите устройство в кожух, закройте крышками.

Есть еще один способ увеличить производство тепла: для этого надо разобраться, как работает вихревой генератор Потапова, коэффициент полезного действия которого может приближаться к 100% и выше (нет единого мнения, почему так происходит).

Во время прохождения воды через сопло или жиклер на выходе создается мощный поток, который ударяется в противоположный конец устройства. Он закручивается, и за счет трения молекул происходит нагревание. Значит, поместив вовнутрь этого потока дополнительную преграду, можно увеличить перемешивание жидкости в устройстве.

Зная, как это работает, можно начать конструировать дополнительное усовершенствование. Это будет гаситель вихрей, сделанный из продольных пластин, расположенных внутри двух колец в виде стабилизатора авиационной бомбы.

Схема стационарного теплогенератора.

Инструменты: сварочный аппарат, угловая шлифовальная машинка.

Материалы: листовой металл или полосовое железо, толстостенная труба.

Сделайте из трубы меньшего диаметра, чем вихревой теплогенератор Потапова, два кольца шириной 4-5 см. Из полосового металла нарежьте одинаковые полоски. Длина их должна равняться четвертой части длины корпуса самого теплового генератора. Ширину подберите с таким расчетом, чтобы после сборки внутри оставалось свободное отверстие.

  1. Закрепите пластину в тисках. Повесьте на нее с одной и другой стороны кольца. Приварите к ним пластину.
  2. Выньте из зажима заготовку и переверните ее на 180 градусов. Поместите внутрь колец пластину и закрепите в зажиме так, чтобы пластины находились друг напротив друга. Закрепите таким образом на равном расстоянии 6 пластин.
  3. Соберите вихревой теплогенератор, вставив описанное устройство напротив сопла.

Наверное, можно и дальше усовершенствовать это изделие. Например, вместо параллельных пластин использовать стальную проволоку, смотав ее в воздушный клубок. Или на пластинах сделать отверстия разного диаметра. Об этом усовершенствовании нигде ничего не сказано, но это не значит, что делать этого не стоит.

Схема устройства тепловой пушки.

  1. Обязательно защитите при помощи окрашивания всех поверхностей вихревой теплогенератор Потапова.
  2. Внутренние его части во время работы будут находиться в очень агрессивной среде, вызванной процессами кавитации. Поэтому и корпус, и все, что в нем находится, постарайтесь сделать из толстого материала. Не экономьте на железе.
  3. Сделайте несколько вариантов крышек с разными входными отверстиями. Потом проще будет подбирать их диаметр, чтобы получить высокую производительность.
  4. Это же относится и к гасителю колебаний. Его также можно видоизменять.

Соберите небольшой лабораторный стенд, где будете обкатывать все характеристики. Для этого не подключайте потребители, а закольцуйте трубопровод на генератор. Это упростит его испытание и подбор необходимых параметров. Так как сложные приборы по определению коэффициента полезной деятельности в домашних условиях вряд ли можно найти, то предлагается следующий тест.

Включите вихревой теплогенератор и засеките время, когда он разогреет воду до определенной температуры. Градусник лучше иметь электронный, он точнее. Затем внесите изменения в конструкцию и снова проведите опыт, следя за повышением температуры. Чем сильнее вода будет нагреваться за одно и то же время, тем больше предпочтений надо будет отдавать окончательному варианту установленного усовершенствования в конструкции.

Заметили, что цена отопления и горячего водоснабжения выросла и не знаете, что с этим делать? Решение проблемы дорогих энергоресурсов - это вихревой теплогенератор. Я расскажу о том, как устроен вихревой теплогенератор и каков принцип его работы. Также вы узнаете, можно ли собрать такой прибор своими руками и как это сделать в условиях домашней мастерской.

Немного истории

Вихревой тепловой генератор считается перспективной и инновационной разработкой. А между тем, технология не нова, так как уже почти 100 лет назад ученые думали над тем, как применить явление кавитации.

Первая действующая опытная установка, так-называемая «вихревая труба», была изготовлена и запатентована французским инженером Джозефом Ранком в 1934 году.

Ранк первым заметил, что температура воздуха на входе в циклон (воздухоочиститель) отличается от температуры той же воздушной струи на выходе. Впрочем, на начальных этапах стендовых испытаний, вихревую трубу проверяли не на эффективность нагрева, а наоборот, на эффективность охлаждения воздушной струи.

Технология получила новое развитие в 60- х годах двадцатого века, когда советские ученые догадались усовершенствовать трубу Ранка, запустив в нее вместо воздушной струи жидкость.

За счет большей, в сравнении воздухом, плотности жидкой среды, температура жидкости, при прохождении через вихревую трубу, менялась более интенсивно. В итоге, опытным путем было установлено, что жидкая среда, проходя через усовершенствованную трубу Ранка, аномально быстро разогревалась с коэффициентом преобразования энергии в 100%!

К сожалению, необходимости в дешёвых источниках тепловой энергии на тот момент не было, и технология не нашла практического применения. Первые действующие кавитационные установки, предназначенные для нагрева жидкой среды, появились только в середине 90-х годов двадцатого века.

Череда энергетических кризисов и, как следствие, увеличивающийся интерес к альтернативным источникам энергии послужили причиной для возобновления работ над эффективными преобразователями энергии движения водяной струи в тепло. В результате, сегодня можно купить установку необходимой мощности и использовать ее в большинстве отопительных систем.

Принцип действия

Кавитация позволяет не давать воде тепло, а извлекать тепло из движущейся воды, при этом нагревая ее до значительных температур.

Устройство действующих образцов вихревых теплогенераторов внешне несложное. Мы можем видеть массивный двигатель, к которому подключена цилиндрическое приспособление «улитка».

«Улитка» - это доработанная версия трубы Ранка. Благодаря характерной форме, интенсивность кавитационных процессов в полости «улитки» значительно выше в сравнении с вихревой трубой.

В полости «улитки» располагается дисковый активатор - диск с особой перфорацией. При вращении диска, жидкая среда в «улитке» приводится в действие, за счет чего происходят кавитационные процессы:

  • Электродвигатель крутит дисковый активатор . Дисковый активатор - это самый важный элемент в конструкции теплогенератора, и он, посредством прямого вала или посредством ременной передачи, подсоединён к электродвигателю. При включении устройства в рабочий режим, двигатель передает крутящий момент на активатор;
  • Активатор раскручивает жидкую среду . Активатор устроен таким образом, что жидкая среда, попадая в полость диска, закручивается и приобретает кинетическую энергию;
  • Преобразование механической энергии в тепловую . Выходя из активатора, жидкая среда теряет ускорение и, в результате резкого торможения, возникает эффект кавитации. В результате, кинетическая энергия нагревает жидкую среду до + 95 °С, и механическая энергия становится тепловой.

Сфера применения

Иллюстрация Описание сферы применения

Отопление . Оборудование, преобразующее механическую энергию движения воды в тепло, с успехом применяется при обогреве различных зданий, начиная с небольших частных построек и заканчивая крупными промышленными объектами.

Кстати, на территории России уже сегодня можно насчитать не менее десяти населённых пунктов, где централизованное отопление обеспечивается не традиционными котельными, а гравитационными генераторами.


Нагрев проточной воды для бытового использования . Теплогенератор, при включении в сеть, очень быстро нагревает воду. Поэтому такое оборудование можно использовать для разогрева воды в автономном водопроводе, в бассейнах, банях, прачечных и т.п.

Смешивание несмешиваемых жидкостей . В лабораторных условиях, кавитационные установки могут использоваться для высококачественного перемешивания жидких сред с разной плотностью, до получения однородной консистенции.

Интеграция в отопительную систему частного дома

Для того, чтобы применить теплогенератор в отопительной системе, его в нее надо внедрить. Как это правильно сделать? На самом деле, в этом нет ничего сложного.

Перед генератором (на рисунке отмечен цифрой 2) устанавливается центробежный насос (на рисунке - 1), которой будет поддавать воду с давлением до 6 атмосфер. После генератора устанавливается расширительный бак (на рисунке - 6) и запорная арматура.

Преимущества применения кавитационных теплогенераторов

Достоинства вихревого источника альтернативной энергии

Экономичность . Благодаря эффективному расходованию электричества и высокому КПД, теплогенератор экономичнее в сравнении с другими видами отопительного оборудования.

Малые габариты в сравнении с обычным отопительным оборудованием сходной мощности . Стационарный генератор, подходящий для отопления небольшого дома, вдвое компактнее современного газового котла.

Если установить теплогенератор в обычную котельную вместо твёрдотопливного котла, останется много свободного места.


Небольшая масса установки . За счет небольшого веса, даже крупные установки высокой мощности можно запросто расположить на полу котельной, не строя специальный фундамент. С расположением компактных модификаций проблем вообще нет.

Единственно, на что нужно обратить внимание при монтаже прибора в отопительной системе, так это на высокий уровень шума. Поэтому монтаж генератора возможен только в нежилом помещении - в котельной, подвале и т.п


Простая конструкция . Теплогенератор кавитационного типа настолько прост, что в нем нечему ломаться.

В устройстве небольшое количество механически подвижных элементов, а сложная электроника отсутствует в принципе. Поэтому вероятность поломки прибора, в сравнении с газовыми или даже твердотопливными котлами, минимальна.


Нет необходимости в дополнительных доработках . Теплогенератор можно интегрировать в уже существующую отопительную систему. То есть, не потребуется менять диаметр труб или их расположение.

Нет необходимости в водоподготовке . Если для нормальной работы газового котла нужен фильтр проточной воды, то устанавливая кавитационный нагреватель, можно не бояться засоров.

За счет специфических процессов в рабочей камере генератора, засоры и накипь на стенках не появляются.


Работа оборудования не требует постоянного контроля . Если за твёрдотопливными котлами нужно присматривать, то кавитационный обогреватель работает в автономном режиме.

Инструкция эксплуатации устройства проста - достаточно включить двигатель в сеть и, при необходимости, выключить.


Экологичность . Кавитационные установки никак не влияют на экосистему, ведь единственный энергопотребляющий компонент - это электродвигатель.

Схемы изготовления теплогенератора кавитационного типа

Для того чтобы сделать действующий прибор своими руками, рассмотрим чертежи и схемы действующих устройств, эффективность которых установлена и документально зарегистрирована в патентных бюро.

Иллюстрации Общее описание конструкций кавитационных теплогенераторов

Общий вид агрегата . На рисунке 1 показана наиболее распространенная схема устройства кавитационного теплогенератора.

Цифрой 1 обозначена вихревая форсунка, на которой смонтирована камера закрутки. С боку камеры закрутки можно видеть входной патрубок (3), который присоединён к центробежному насосу (4).

Цифрой 6 на схеме обозначены впускные патрубки для создания встречного возмущающего потока.

Особо важный элемент на схеме - это резонатор (7) выполненный в виде полой камеры, объем которой изменяется посредством поршня (9).

Цифрой 12 и 11 обозначены дроссели, которые обеспечивают контроль интенсивности подачи водных потоков.

Прибор с двумя последовательными резонаторами . На рис 2 показан теплогенератор, в котором резонаторы (15 и 16) установлены последовательно.

Один из резонаторов (15) выполнен в виде полой камеры, окружающей сопло, обозначенное цифрой 5. Второй резонатор (16) также выполнен в виде полой камеры и расположен с обратного торца устройства в непосредственной близости от входных патрубков (10) подающих возмущающие потоки.

Дроссели, помеченные цифрами 17 и 18, отвечают за интенсивность подачи жидкой среды и за режим работы всего устройства.


Теплогенератор с встречными резонаторами . На рис. 3 показана малораспространённая, но очень эффективная схема прибора, в котором два резонатора (19, 20) расположены друг напротив друга.

В этой схеме вихревая форсунка (1) соплом (5) огибает выходное отверстие резонатора (21). Напротив, резонатора, отмеченного цифрой 19, вы можете видеть входное отверстие (22) резонатора под номером 20.

Обратите внимание на то, что выходные отверстия двух резонаторов расположены соосно.

Иллюстрации Описание камеры закрутки (Улитки) в конструкции кавитационного теплогенератора
«Улитка» кавитационного теплогенератора в поперечном разрезе . На этой схеме можно видеть следующие детали:

1 - корпус, который выполнен полым, и в котором располагаются все принципиально важные элементы;

2 - вал, на котором закреплен роторный диск;

3 - роторное кольцо;

4 - статор;

5 - технологические отверстия проделанная в статоре;

6 - излучатели в виде стержней.

Основные трудности при изготовлении перечисленных элементов могут возникнуть при производстве полого корпуса, так как лучше всего его сделать литым.

Так как оборудования для литья металла в домашней мастерской нет, такую конструкцию, пусть и с ущербом для прочности, придётся делать сварной.


Схема совмещения роторного кольца (3) и статора (4) . На схеме показано роторное кольцо и статор в момент совмещения при прокручивании роторного диска. То есть, при каждом совмещении этих элементов мы видим образование эффекта, аналогичного действию трубы Ранка.

Такой эффект будет возможен при условии, что в агрегате, собранном по предложенной схеме, все детали будут идеально подогнаны друг к другу


Поворотное смещение роторного кольца и статора . На этой схеме показано то положение конструктивных элементов «улитки», при котором происходит гидравлический удар (схлопывание пузырьков), и жидкая среда нагревается.

То есть, за счёт скорости вращения роторного диска, можно задать параметры интенсивности возникновения гидравлических ударов, провоцирующих выброс энергии. Проще говоря, чем быстрее будет раскручиваться диск, тем температура водной среды на выходе будет выше.

Подведем итоги

Теперь вы знаете, что собой представляет популярный и востребованный источник альтернативной энергии. А значит, вам будет просто решить: подходит такое оборудование или нет. Также рекомендую к просмотру видео в этой статье.

С каждым годом подорожание отопления заставляет искать более дешевые способы обогрева жилой площади в холодную пору года. Особенно это относится к тем домам и квартирам, которые имеют большую квадратуру. Одним из таких способов экономии является вихревой . Он имеет массу преимуществ, а также позволяет экономить на создании. Простота конструкции не затруднит его сбор даже у новичков. Далее рассмотрим преимущества такого способа отопления, а также попытаемся составить план-схему по сбору теплогенератора своими руками.

Теплогенератор – это специальный прибор, основная цель которого вырабатывать тепло, путем сжигания, загружаемого в него, топлива. При этом вырабатывается тепло, которое затрачивается на обогрев теплоносителя, который уже в свою очередь непосредственно выполняет функцию обогрева жилой площади.

Первые теплогенераторы появились на рынке еще в 1856 году, благодаря изобретению британского физика Роберта Бунзена, который в ходе ряда проведенных опытов заметил, что вырабатываемое при горении тепло можно направлять в любое русло.

С тех пор генераторы, конечно же, модифицировались и способны обогревать гораздо больше площади, нежели это было 250 лет назад.

Принципиальным критерием, по которому генераторы отличаются друг от друга, является загружаемое топливо. В зависимости от этого выделяют следующие виды :

  1. Дизельные теплогенераторы – вырабатывают тепло в результате сгорания дизельного топлива. Способны хорошо обогревать большие площади, но для дома их лучше не использовать в силу наличия выработки токсичных веществ, образуемых в результате сгорания топлива.
  2. Газовые теплогенераторы – работают по принципу непрерывной подачи газа, сгорая в специальной камере который также вырабатывает тепло. Считается вполне экономичным вариантом, однако установка требует специального разрешения и соблюдения повышенной безопасности.
  3. Генераторы, работающие на твердом топливе – по конструкции напоминают обычную угольную печь, где имеется камера сгорания, отсек для сажи и пепла, а также нагревательный элемент. Удобны для эксплуатации на открытой местности, поскольку их работа не зависит от погодных условий.
  4. – их принцип работы основывается на процессе термической конверсии, при которой пузырьки, образуемые в жидкости, провоцируют смешанный поток фаз, увеличивающий вырабатываемое количество тепла.

Изготовление теплогенератора своими руками – достаточно сложный и кропотливый процесс. Как правило, данное устройство необходимо для обеспечения экономного отопления в жилищах. Тепловые генераторы бывают 2 конструкций: статические и роторные. В первом случае в качестве главного элемента нужно использовать сопло. В роторном генераторе для создания кавитации следует использовать электродвигатель.

Этот агрегат представляет собой модернизированный центробежный насос, точнее его корпус, который будет служить в качестве статора. Не обойтись и без рабочей камеры и патрубков.

Внутри корпуса нашей гидродинамической конструкции стоит маховик в качестве рабочего колеса. Существует огромное количество разнообразных роторных конструкций генераторов тепла. Самой простой среди них является конструкция с диском.

На цилиндрическую поверхность диска ротора наноситься необходимое количество отверстий, которые должны иметь определенный диаметр и глубину. Их принято называть «ячейки Григгса». Стоит отметить, что размеры и количество просверленных отверстий будут изменяться в зависимости от калибра роторного диска и частоты вращения вала электромотора.

Корпус такого источника тепла чаще всего изготавливают в виде пустотелого цилиндра. По сути – это обычная труба с заваренными фланцами на концах. Зазор между внутренней частью корпуса и маховиком будет очень мал (примерно 1,5-2 мм).

Непосредственный подогрев воды будет происходить именно в данном зазоре. Нагревание жидкости получается за счет ее трения о поверхность ротора и корпуса одновременно, при этом диск маховика движется практически на предельных скоростях.

Кавитационные (образование пузырей) процессы, которые происходят в роторных ячейках, оказывают большое влияние на нагрев жидкости.

Роторный теплогенератор - это модернизированный центробежный насос, точнее его корпус, который будет служить в качестве статора

Как правило, диаметр диска в данном типе генераторов тепла составляет 300 мм, а скорость вращения гидроустройства 3200 оборотов в минуту. В зависимости от размеров ротора частота вращения будет различаться.

Анализируя конструкцию данной установки можно сделать вывод, что ее ресурс функционирования достаточно мал. Из-за постоянного нагрева и абразивного действия воды зазор постепенно расширяется.

Стоит отметить, что роторные теплогенераторы при работе создают сильный шум. Однако, в сравнении с другими гидроустройствами (статического типа) они производительнее на 30%.

Изготовление вихревого теплогенератора Потапова

Разработано множество других устройств, действующих совсем на иных принципах. Например, вихревые теплогенераторы Потапова, изготовленные своими руками. Их называют статическими условно. Это обуславливается тем, что гидроустройство не имеет вращающихся частей в конструкции. Как правило, вихревые теплогенераторы получают тепло с помощью насоса и электродвигателя.

Самым главным этапом в процессе выполнения такого источника тепла своими руками будет выбор двигателя. Его следует выбирать в зависимости от напряжения. Существуют множественные чертежи и схемы вихревого генератора тепла, изготовленного своими руками, на которых продемонстрированы методы подключения электродвигателя с напряжением 380 Вольт к сети 220.

Сборка рамы и установка двигателя

Монтаж источника тепла Потапова своими руками начинается с установки электродвигателя. Сначала закрепите его на станине. Затем при помощи угловой шлифовальной машинки изготовьте уголки. Нарежьте их из подходящего угольника. После изготовления 2-3 угольников закрепите их на поперечину. Затем при помощи сварочного аппарата соберите прямоугольную конструкцию.

Если под рукой не оказалось сварочного аппарата – резать угольники не нужно. Просто в местах предполагаемого сгиба выпилите треугольники. Затем согните угольники, применив тиски. Для закрепления используйте болты, заклепки и гайки.

После сборки можно окрасить раму и просверлить отверстия в каркасе для установки двигателя.

Установка насоса

Следующим немаловажным элементом нашей вихревой гидроконструкции будет насос. В наши дни в специализированных магазинах вы можете без труда приобрести агрегат любой мощности. При его выборе внимательно следите за 2 вещами:

  1. Он должен быть центробежным.
  2. Выбирайте такой агрегат, который будет оптимально работать с вашим электродвигателем.

После того, как вы приобрели насос, закрепите его на раме. Если не хватает поперечин – изготовьте еще 2-3 уголка. Кроме этого, нужно будет обязательно найти соединительную муфту. Ее можно выточить на токарном станке либо приобрести в любом хозяйственном магазине.

Вихревой кавитационный теплогенератор Потапова на дровах, изготовленный своими руками, состоит из корпуса, который выполнен в виде цилиндра. Стоит отметить, что на его концах обязательно должны присутствовать сквозные отверстия и патрубки, иначе вы не сможете правильно присоединить гидроконструкцию к системе отопления.

Сразу за входным патрубком вставьте жиклер. Он подбирается индивидуально. Однако помните, что его отверстие должно быть в 8-10 раз меньше, чем диаметр трубы. При изготовлении слишком маленького отверстия насос будет перегреваться и не сможет обеспечить правильную циркуляцию воды.

Кроме этого, вследствие парообразования вихревой кавитационный теплогенератор Потапова на дровах будет сильно подвержен гидроабразивному изнашиванию.

Как изготовить трубу

Процесс изготовления этого элемента источника тепла Потапова на дровах будет происходить в несколько этапов:

  1. Сначала с помощью болгарки отрежьте кусок трубы диаметром 100 мм. Длина заготовки должна быть не менее 600-650 мм.
  2. Затем сделайте в заготовке внешнюю проточку и нарежьте резьбу.
  3. После этого изготовьте два кольца длиной 60 мм. калибр колец должен соответствовать диаметру трубы.
  4. Затем нарежьте резьбу для полуколец.
  5. Следующий этап – изготовление крышек. Их необходимо приварить со стороны колец, где нет резьбы.
  6. Далее просверлите в крышках центральное отверстие.
  7. Затем с помощью сверла большого калибра изготовьте фаску с внутренней стороны крышки.

После проделанных операций следует подключить кавитационный теплогенератор на дровах к системе. В отверстие насоса, откуда подается вода, вставьте патрубок с форсункой. Другой штуцер соедините с системой отопления. Выход из гидросистемы присоедините к насосу.

Если вы хотите регулировать температуру жидкости – установите прямо за патрубком шаровой механизм. С его помощью теплогенератор Потапова на дровах будет значительно дольше прогонять воду по всему устройству.

Можно ли повысить производительность источника тепла Потапова

В этом устройстве, как и в любой гидросистеме, происходит потеря тепла. Поэтому желательно насос окружить водной «рубашкой». Для этого сделайте теплоизолирующий корпус. Внешний калибр такого защитного устройства сделайте больше, чем диаметр вашего насоса.

В качестве заготовки для теплоизоляции можно использовать готовую 120 мм трубу. Если у вас нет такой возможности – вы можете своими руками сделать параллелепипед с помощью листовой стали. Размеры фигуры должны быть такими, чтобы в нее без труда помещалась вся конструкция генератора.

Заготовка должна быть изготовлена только из качественных материалов, чтобы без проблем выдерживать высокое давление в системе.

Для того чтобы еще больше снизить потери тепла вокруг корпуса, сделайте теплоизоляцию, которую в последствии можно будет обшить кожухом из жести.

В качестве изолятора можно использовать абсолютно любой материал, который способен выдерживать температуру кипения воды.

Изготовление теплоизолятора будет происходить в несколько этапов:

  1. Сначала соберите устройство, которое будет состоять из насоса, соединительного патрубка, генератора тепла.
  2. После этого подберите оптимальные габариты теплоизоляционного устройства и найдите трубу подходящего калибра.
  3. Затем изготовьте крышки с двух сторон.
  4. После этого надежно закрепите внутренние механизмы гидросистемы.
  5. В конце сделайте входное отверстие и закрепите (приварите или вкрутите) в него патрубок.

После проделанных операций на конце гидротрубы приварите фланец. Если у вас возникают трудности с монтированием внутренних механизмов – можно выполнить каркас.

Обязательно проверьте герметичность узлов генератора тепла и вашу гидросистему на протеки. В конце не забудьте отрегулировать температуру с помощью шаровика.

Защита от мороза

Прежде всего, сделайте кожух утеплителя. Для этого возьмите оцинкованную жесть либо тонкий лист алюминия. Вырежьте два прямоугольника. Помните, что гнуть лист необходимо на оправке большего диаметра. Еще можно производить гибку материала на поперечине.

Для начала положите вырезанный лист и прижмите его сверху деревянным бруском. Другой рукой нажмите на лист таким образом, чтобы по всей длине образовался небольшой изгиб. Затем немного подвиньте вашу заготовку вбок и продолжайте гнуть ее до тех пор, пока не получится пустотелый цилиндр.

После этого сделайте крышку для кожуха. Желательно обмотать всю термоизоляционную конструкцию специальным теплостойким материалом (стекловатой и т.д.), который необходимо впоследствии закрепить с помощью проволоки.

Инструменты и приборы


Материалы

  1. Проволока.
  2. Тонкий лист алюминия.
  3. Труба диаметром 300 мм.
  4. Замок.
  5. Утеплительные материалы.
  6. Оцинкованная жесть.

В заключение стоит отметить, что теплогенераторы помогут вам сэкономить внушительную сумму денег. Однако для рациональной работы устройства необходимо со всей ответственностью подойти к процессу изготовления теплоизолятора и обшивки.