Генетически модифицированные организмы гмо - реферат. Кто придумал ГМО? История создания гмо

А начиналось всё в далёком 72-м году. Американский инженер, учёный Пол Берг, смог соединить два чужеродных гена в один, который самостоятельно в природе никак образоваться не смог бы. Это дало «зелёный свет» для экспериментов с различными живыми организмами. Полученным трансгенетическим организмам стали давать различные названия: уже знакомое – «ГМО», «рекомбинантные», «генно-инженерные», «живые изменённые» и даже «химерные».

Однако учёной среде это открытие не принесло большой радости. Экспериментаторы стали задумываться над последствиями. И совершенно справедливо. Не был выяснен до конца уровень опасности созданных организмов. Как они поведут себя дальше в природе, обмениваясь «химерными» генами? К чему это может привести? Сомнения были столь серьёзны, что учёные, в числе которых был и предприимчивый П. Берг, составили коллективный документ, с просьбой приостановить трансгенные разработки. Напечатанное в СМИ прошение сделало своё дело, и проект был временно заморожен. Но история создания ГМО на этом не закончилась. Целых 3 года учёные разрабатывали правила безопасной работы с трансгенными организмами.

В 76-м проект был разморожен и коллектив исследователей продолжил свою научную деятельность. Прошло три десятилетия, эксперименты не принесли никакого ущерба и некоторые меры предосторожности были упразднены.

Через 2 года Герберт Бойер открывает компанию, которая создаёт, трансгенный продукт, производящий инсулин человека. Спустя 14 лет, в 92-м, в Китае приступили к выращиванию табака, устойчивого к насекомым. Прошло ещё 2 года и в 94-м году, благодаря фирме «Monsanto» из США, появился первый трансгенный помидор, который был пущен «в массы». Овощ не боялся транспортировок, мог сохранять презентабельный вид в течение 6 месяцев и дозревать в помещении при повышении температуры воздуха до +23-25 °С. Именно 1994 год считают началом массового производства трансгенных продуктов питания.

Через год, в 95-м, всё та же «Monsanto» всерьёз занялась выращиванием гено-модифицированной сои, не боящейся сорных трав. Затем пришёл черёд кукурузы, хлопка, табака, рапса, картофеля и остальных культур. Сейчас этой компании принадлежит 50% рынка трансгенных семян в мире.

Ещё через 4 года появился «химерный» рис. Количество фермеров, желающих заполучить «не убиваемые» овощи, росло в геометрической прогрессии.

Первые отрицательные воздействия были обнародованы в 98-м году английским учёным А. Пуштай. В ТВ-передаче он нашёл в себе смелость заявить, что крысы, питавшиеся гено-модифицированным картофелем, демонстрировали необратимые изменения организма с нарушениями внутренних органов. Он был уволен. А ещё через год, независимая группа ученых, изучив его работы, во всеуслышание подтвердила достоверность данных, представленных А. Пуштаем. Это вынудило британские власти запретить продажу ГМО без наличия лицензии, чего не скажешь о США.

По состоянию на 2014 год, из всех площадей в мире, отведённых под посевы, более 15% занято выращиванием трансгенных продуктов. Возглавляет список, естественно, США, далее следуют Аргентина, Канада, Бразилия, Китай и Индия.

Сейчас в мире проживает около 5 млрд. человек. По прогнозам учёных к концу века население Земли может увеличиться до 10 млрд.

Одна из основных проблем, с которыми столкнулось человечество – это недостаток продовольствия. Даже сейчас, при 5-миллиардном населении, жители некоторых регионов голодают. В связи с этим в сельское хозяйство внедряются наиболее производительные биотехнологии. Одной из таких технологий является генная инженерия, при помощи которой создаются генетически модифицированные продукты.

Суть генной инженерии в следующем. Любое растение или животное имеет тысячи различных признаков. Например, у растений: цвет листьев, величина семян, наличие в плодах определённого витамина и т.п. За наличие каждого конкретного признака отвечает определённый ген, который представляет собой маленький кусочек молекулы ДНК и отвечает за появление определённого признака растения или животного. Если убрать ген, отвечающий за появление определённого признака, то исчезнет и сам признак. Если добавить, например, новый ген, то у растения появится и новый признак. Изменённое же генетически растение может теперь именоваться мутантом. К концу ХХ века эксперименты по искусственному изменению (модифицированию) растений и животных получили очень широкое распространение.

Первым генетически модифицированным продуктом стал помидор. Его новым свойством стала способность месяцами лежать в недоспелом виде при температуре 12 градусов. Но как только такой помидор помещают в тепло, он за несколько часов становится спелым.

Лидирующую роль в генной инженерии продуктов занимают США. 68% всех генетически модифицированных продуктов производится именно там. За ними следуют Франция и Канада. Американские корпорации проводят свои эксперименты в Центральной и Южной Америке. Крупнейшая компания – Monsanto.

Американцы добились изменения клубники, тюльпанов. Вывели сорт генетически модифицированного картофеля, который при жарке впитывает меньше жира. Они же скоро планируют получить помидоры-гиганты кубической формы, чтобы те было легче упаковывать в ящики. Швейцарцы начали выращивать кукурузу, которая выделяет собственный яд против вредителей, и таких примеров множество.

Подобные разработки проводятся и в России. Так, в Московском институте картофелеводства выводится картофель с человеческим интерфероном крови, который повышает иммунитет. В Институте животноводства получен патент на овцу, у которой в молоке присутствует сычужный фермент, необходимый для производства сыра. Специалисты утверждают, что при новой технологии производства сыра, достаточно будет всего 200 овец, чтобы обеспечить сыром всю Россию.

Таких примеров множество. Очевидно, что в связи со способностью генетически модифицировать продукты, человечество стоит на пороге настоящей революции в растениеводстве и животноводстве, и в XXI веке появится большое количество относительно недорогих продуктов. В докладе комиссии по сельскому хозяйству Совета Европы говорится, что генетически модифицированные продукты позволят поддержать сельское хозяйство, что особенно важно для развивающихся стран.

Генетически модифицированные продукты: за и против

С момента появления первого генетически модифицированного продукта началась история противостояния их противников и сторонников. Четкого перевеса нет ни на чьей стороне.

Главный аргумент сторонников модифицированных продуктов – это характеристики самих овощей, фруктов, зерновых культур, улучшенных инженерами. Генетически модифицированные продукты более устойчивы к всевозможным вирусам и бактериям. Они дольше хранятся. Ранее фермеры использовали тонны химикатов, чтобы сохранить урожай, теперь они могут сэкономить деньги. К тому же данные продукты могут быть устойчивыми и к холоду, и к жаре, и соленые почвы им нипочем.

Цели генетической технологии, применяемой к животным, – это обычно ускорение и увеличение их роста. Были получены коровы с увеличенным содержанием жира в молоке и лососи, которые очень быстро растут и которым не надо мигрировать из морской воды в пресную.

На сегодняшний день существует несколько сотен генетически модифицированных продуктов. Уже на протяжении нескольких лет модифицированные продукты употребляют миллионы людей в большинстве стран мира. Возможно и Вы, уважаемый читатель, не зная об этом, съели уже не один килограмм генетически изменённых продуктов.

Трансгены обнаружены в продуктах, которые содержат соевый белок, в тех же колбасах. Сою Россия импортирует из стран, где выращивание генетически-модифицированной сои разрешено давно. В Америке и Канаде, по сути, не осталось традиционных сортов, все они производятся на генном уровне. Ежегодно наша страна закупает около 400 тысяч тонн генетически модифицированного соевого белка.

Если генетические манипуляции ведутся под контролем официальных органов, то такие продукты можно считать полностью безопасными. Внося изменения в генный код растения или животного, учёные делают то же самое, что делает сама природа. Абсолютно все живые организмы от бактерии до человека - это результат мутаций и естественного отбора. Но если природе для образования новых видов требуются тысячелетия, то учёные производят этот процесс за несколько лет. Принципиальной разницы нет, вопрос во времени экспериментов.

Однако генетически модифицированных продуктов находится немало оппонентов. Существует даже организация «Врачи и ученые против генетически модифицированных продуктов питания». Если отбросить этические моменты в производстве данных продуктов, которые некоторые рассматривают как противоестественное вмешательство в природу, созданную Богом, то у противников модифицированных продуктов останется еще масса аргументов.

Они говорят о том, что сейчас генная инженерия не совершенна. Она не в состоянии управлять процессом встраивания нового гена. Поэтому невозможно предвидеть место встраивания и эффекты добавленного гена. Даже в том случае, если местоположение гена окажется возможным установить после его встраивания в геном, имеющиеся сведения о функционировании ДНК еще очень неполны для того, чтобы предсказать последствия. В результате искусственного добавления чужеродного гена непредвиденно могут образоваться опасные вещества. В худшем случае это могут быть токсические вещества, аллергены или другие вредные для здоровья элементы.

Не доказано ещё, что модифицированные с помощью генной инженерии организмы не окажут вредного воздействия на окружающую среду. Экологами высказаны предположения о различных потенциальных экологических осложнениях. Например, имеется много возможностей для неконтролируемого распространения потенциально опасных генов, используемых генной инженерией, в том числе передача генов бактериями и вирусами. Осложнения, вызванные в окружающей среде, вероятно, невозможно будет исправить, так как выпущенные гены невозможно взять обратно.

Разговоры о том, что данные разработки помогут накормить все человечество, оппоненты опровергают конкретными данными: сейчас подобные продукты, скорее, удовлетворяют чисто коммерческие интересы. Никаких серьезных результатов в борьбе с голодом в развивающихся странах с помощью модифицированных продуктов достигнуто не было. Генетически-модифицированные продукты, призванные решить проблему голода во многих развивающихся странах, пока появились только на прилавках стран развитых. Однако жители эти стран предпочитают натуральные продукты, так как еще не до конца выяснены возможные негативные последствия употребления в пищу искусственно улучшенных растений или животных.

Общественное мнение настроено в целом против модифицированных продуктов. Под давлением общественных организаций некоторые государства приняли законы о прекращении исследований в данной области, многие ввели отдельную сертификацию для данных продуктов, обязали производителей указывать на упаковках происхождение продуктов. Естественно, спрос на модифицированные продукты резко упал. Как ни старалась, например, компания Monsanto, потратившая около миллиона долларов на пропаганду своей продукции, результат был практически нулевой.

Тогда компании стали лоббировать свои интересы в парламентах и высших органах исполнительной власти своих стран. США никогда не вводили ограничений, модифицированные продукты продаются там наравне с обыкновенными. Теперь то же происходит и в Новой Зеландии, Австралии. В Европе всерьез задумались об отмене обязательной маркировки.

С 1996 года в России существует закон, регулирующий деятельность в области генной инженерии. Согласно этому документу, импортные продукты, содержащие генетически измененные компоненты, должны проходить сертификацию и тесты на безопасность в российских научных институтах. После этого они могут быть введены в широкое потребление. Согласно закону, летом 1999 года Минздрав РФ выдал первую лицензию на импорт генетически модифицированных продуктов. Первой ласточкой стала соя от фирмы Monsanto. В сентябре 1999 года вышло постановление Правительства, согласно которому с июля 2000 года все продукты, содержащие ГМ-компоненты, должны иметь маркировку. Однако механизмов контроля по выполнению постановления пока не существует.

Скорее всего, после отмены законов и постановлений, обязывающих производителей извещать покупателей о происхождении продукта, модифицированные образцы сольются с традиционными, и никто не сможет с уверенностью сказать, что он ест. Людей просто вынудят покупать «улучшенные» продукты. Стоит надеяться, что исследования возможных вредных воздействий модифицированных продуктов на организм человека продолжатся. Они и будут призваны решить все споры.

Начало всему этому положил человек, родившийся 30 июня 1926 года. Итак, знакомьтесь: Пол Берг.

Пол Наим Берг. Родился 30 июня 1926 г. в Бруклине (Нью-Йорк), США. Лауреат Нобелевской премии по химии 1980 года (1/2 премии, по 1/4 присуждено Уолтеру Гилберту и Фредерику Сенгеру за создание метода секвенирования ДНК).

В 1926 году случилось два знаменательных события в истории биологии и биохимии. Второе, менее важное (возможно!) - это рождение нашего героя, одного из трех сыновей производителя одежды Гарри Берга и домохозяйки Сары Бродски. Первое же событие имело, наверное, даже большее значение, чем рождение отца генной инженерии. 36-летний американский микробиолог из Мичигана Поль Генри де Крюи (иногда у нас его называли «де Кройф» и даже «де Крайф») написал книжку, которая стала, пожалуй, первым научно-популярным бестселлером.

Даже в СССР/России эта книга выдержала, наверное, не менее десятка изданий (рис. 1). И популярна до сих пор. «Охотники за микробами» Крюи с 1920-х и по сей день приводят в науку всё новых и новых людей: по меньшей мере, я знаю биохимиков младше меня, в детстве зачарованно читавших эту книжку, а нынче публикующих замечательные статьи в Nature.

Одно из многих русскоязычных изданий «Охотников за микробами» П. де Крюи (СССР, изд-во «Молодая гвардия», 1957 г.)

Наш герой в детстве тоже зачитывался сравнительно недавним бестселлером. Так что его судьба была предопределена сразу же - микробы, вирусы, их биохимия.

Но для начала нужно было пройти стандартный путь - школу и университет. Берг закончил школу Авраама Линкольна в январе 1943 года. К тому времени США уже участвовали во Второй мировой, и как только ему исполнилось 17 лет (июнь 1943), Берг пошел во флот. Он должен был стать летчиком палубной авиации, а этому нужно было учиться. Чтобы не терять времени в простом ожидании, Берг поступил в Пенн Стейт (Pennsylvania State University). Правда, летчиком Пол так и не стал: программу сократили, и ему пришлось служить по прямо противоположной специальности - на подводной лодке. В 1946 году Берг демобилизовался и уже в 1948 стал бакалавром в своем университете, а в 1952 его ждала докторская степень по биохимии в Западном резервном университете Кейза (Case Western Reserve University). В своей диссертации он показал роль фолиевой кислоты и витамина B12 в синтезе метионина.

С тех пор (так уж случилось) Берг работает только с лучшими. К примеру, в 1954 году Берг перешел на кафедру микробиологии в Медицинскую школу университета Вашингтона (WUSM), где начал работать с Артуром Корнбергом - первым человеком, синтезировавшим ДНК, и нобелевским лауреатом 1959 года за это достижение (рис. 2).


Артур Корнберг (1918-2007). Лауреат Нобелевской премии по физиологии и медицине 1959 года.

В лаборатории Корнберга (уже в Стэнфорде, куда Корнберг с командой ушел в 1959 году) Берг изучает механизм, по которому аминокислоты собираются в белки. Собственно говоря, именно Берг установил, как транспортные рибонуклеиновые кислоты (тРНК) переносят аминокислоты в место синтеза белка.

Примерно к середине 1960-х годов работа генов в клетках становится понятнее. В первую очередь - благодаря бактериофагам, которые могут встраивать свою ДНК в геном бактерий. Как всегда, главные открытия были сделаны на «лабораторной мыши» микробиологов - кишечной палочке E. coli - и заражающем ее бактериофаге лямбда. Вирусы применялись для анализа работы генов, тогда же биохимики и генетики научились при помощи вирусов манипулировать генами. Бергу очень хотелось делать то же самое с генами многоклеточных организмов.

В 1967 году Берг взял в Стэнфорде отпуск на год. Впрочем, «отпуск» в его случае не означал отсутствие работы. Он поехал в Солковский (не путать со Сколковским!!!) институт к еще одному будущему нобелиату - Ренато Дульбекко (рис. 3). Дульбекко незадолго до того открыл полиомавирус, вызывающий опухоли у мышей. Главной целью Берга было освоение работы с культурами клеток, однако ДНК-вирус его заинтересовал.


Ренато Дульбекко (1914-2012). Лауреат Нобелевской премии по физиологии и медицине 1975 года.

Когда Берг вернулся в Стэнфорд, он продолжил эксперименты с полиомавирусами, взяв в работу полиомавирус SV40 (рис. 4). Берг понял, что можно использовать SV40 как вектор для введения в обычную клетку другой генетической информации. И запланировал очень изящный эксперимент, по-хорошему, ставший началом всей генной инженерии.


Электронные фотографии вирионов полиомавируса SV40 и его ДНК. Иллюстрация из нобелевской лекции Пола Берга

В обычных условиях SV40 не взаимодействует с кишечной палочкой. Поэтому Берг использовал набор ферментов, выделенных Корнбергом, чтобы разрезать ДНК SV40 и бактериофага лямбда и затем «собрать» из кусочков химерную, или, как принято говорить, рекомбинантную ДНК. В итоге получилась плазмида - кольцевая молекула, состоящая из ДНК вируса SV40 и ДНК бактериофага лямбда с «заимствованным» у кишечной палочки галактозным опероном (последовательностью генов, кодирующих метаболизм галактозы) (рис. 5).

Схема эксперимента Берга. Иллюстрация из нобелевской лекции Пола Берга

Чем хорошо писать о нобелиатах последних 30 лет? Во-первых, многие из них живы по сей день. А во-вторых, легко можно найти видео, где они сами рассказывают о своих работах.

Давайте послушаем самого Берга:

Успех пришел в 1972 году, а за успехом пришел испуг. Ну ладно, не испуг - нормальная и правильная предосторожность: об онкогенности вирусов тогда было известно (из работ Дульбекко в частности), причем полиомавирус SV40 был способен вызывать рак у некоторых животных. Поэтому Берг задумался - вдруг искусственные вирусы будут порождать новые, онкогенные бактерии?

В 1974 году он написал письмо в крупнейшие научные журналы (Nature, Science и другие), в котором призвал ввести годичный мораторий на операции с рекомбинантными ДНК. И начал готовить конференцию для обсуждения потенциальной опасности. В 1975 году в Калифорнии прошла знаменитая Асиломарская конференция по рекомбинантной ДНК. Впрочем, достаточно быстро стало понятно, что опасность была преувеличена - и работы с рекомбинантной ДНК были продолжены.

Началась эпоха генной инженерии, а пять лет спустя - в 1980 году - Берг был удостоен Нобелевской премии по химии. Наш герой получил половину премии, вторую часть поделили между собой личности не менее легендарные - Уолтер Гилберт (вообще начинавший в физике элементарных частиц и работавший у Абдуса Салама) и Фредерик Сенгер (уже получавший химического «нобеля» в 1958 году за расшифровку структуры инсулина). Эти двое создали метод установления первичной структуры ДНК - секвенирование. Право выступить на нобелевском банкете от всех троих получил Берг. В своей речи Берг привел ставшую классической метафору другого нобелевского лауреата, Питера Брайена Медавара: «Если мы представим развитие живых организмов сжатым в год космического времени, то развитие человека заняло только день. Только в течение последних 10–15 минут длится наша жизнь, совсем не сомнительная. Мы - всё еще новички и можем надеяться стать лучше. Высмеивать надежду на прогресс - окончательная глупость, последнее слово бедности духа и подлости ума».

В своём интервью на сайте Нобелевского комитета Берг говорит: «Не совсем корректно называть меня отцом генной инженерии. Мы сделали лишь первый шаг на пути к ней».

Генетически модифицированные организмы (ГМО) – сейчас любимая тема журналистов. Распространение на территории России ГМО и продукции, произведенной из генетически модифицированных животных и растений, находится под постоянным прицелом депутатов Госдумы. То и дело какой-нибудь зоркий законотворец начинает бить тревогу по поводу того, что продукты из генетически модифицированных организмов причинят вред народному здоровью.

Все это было бы смешно, когда бы не было так грустно. Потому что те страхи и ужасы, которые рассказывают про генетически модифицированные организмы, являются манипуляцией с общественным сознанием, которую проделывают интересанты, пользуясь тем, что люди в большинстве своем имеют слабое представление о биологии и о генетике.

Как известно, основой клеток, из которых состоит любой живой организм на нашей планете, являются молекулы ДНК, дизоксирибонуклеиновой кислоты. Эти полимерные (то есть, очень длинные) молекулы представляют собой две белковые цепочки, каждая из которых свернута в спираль, расположенных одна относительно другой так, что спирали как бы вставлены одна в другую. Участки такой молекулы ДНК, содержат комбинации белков, определяющие все индивидуальные характеристики организма. Эти участки называются генами. Именно они определяют размеры, физические, физиологические и функциональные особенности организмов. Последовательность генов в ДНК любого организма называется геномом. В настоящее время ученые-биологи расшифровали геномы многих организмов, то есть они знают, какой ген за какие свойства организма отвечает. Такое знание само по себе – великое достижение.

Но генетики пошли дальше и начали применять это знание на практике. Была разработана техника, позволяющая, фигурально выражаясь, производить операции над генами. Генетики научились выделять те или иные гены и пересаживать их с одной молекулы ДНК на другую. При этом, поскольку молекулы ДНК всех организмов состоят из одних и тех же составляющих, нуклеотидов, можно брать ген одного организма и «прививать» его другому организму, целенаправленно изменяя свойства этого организма. Именно, от этой процедуры трансгенной пересадки «закипает разум возмущенный» широкой публики, которой почему-то представляется, что если в наследственный аппарат, скажем, пшеницы, пересадить ген, находившийся в ДНК овцы, то пшеница эта не только повысит урожайность, но еще и заблеет. Не заблеет!

Между тем, генная инженерия, занимающаяся целенаправленным изменением ДНК, ничем не отличается от обычной селекции. Селекцию, то есть целенаправленный искусственный отбор человечество применяло с древнейших времен, изменяя растительный и животный мир (а также геномы растений и животных) в сторону максимального развития полезных свойств. Именно так были выведены новые сорта растений и новые породы животных. При этом почему-то никто не возмущался тем, что человек со всем этим искусственным и целенаправленным отбором вмешивается в замысел Божий.

Генная инженерия позволяет ускорить процесс селекции и достигнуть за несколько лет результатов, на достижение которых раньше тратились десятки лет. Скрещивая гены разных видов (причем видов, очень далеко отстоящих друг от друга), биологи получают новые виды, отличающиеся улучшенными качествами.

Кто же виноват во всем этом? Имя «виновника» известно: американский биохимик Пол Наим Берг (Paul Naim Berg) .

Он родился в 1926 году в Бруклине, одном из районов Нью-Йорка. Пол с детства хотел стать ученым, но перед этим принял участие во Второй мировой войне. Он служил в Военно-морском флоте и на подводных лодках. Демобилизовавшись в 1946 году, он изучал биохимию в Пенсильванском университете. С 1959 года П.Берг работал на факультете биохимии Стэнфордского университета в Калифорнии. В 1970-х годах он разработал методику пересадки генов с ДНК одной бактерии в ДНК другой бактерии, тем самым изменяя ее генотип и фактически создавая новый организм с нужными свойствами.

В 1977 году произошел прорыв в генной инженерии, когда, пользуясь методами Пола Берга, ученые научились переносить части генома бактерий в растения и начали создавать растения с новыми, полезными, свойствами: быстро созревающие, более урожайные, устойчивые к вредителям и болезням.

В 1980 году Пол Берг вместе с Уолтером Гилбертом и Фредериком Сингером получил Нобелевскую премию по химии за фундаментальные исследования нуклеиновых кислот, которые стали основой генной инженерии.

А в 1996 году появились первые генно-модифицированные растения с новыми, невиданными раннее свойствами. Генно-модифицированные соя, рис, хлопок, кукуруза и рапс открыли эпоху новых сортов с повышенной урожайностью. Затем была «сделана» более крупная картошка, которую не ел колорадский жук. Во всех генетически модифицированных продуктах отсутствуют аллергенные или токсические вещества, они отличаются прекрасным вкусом и качеством.

Тех же, кто относится к генно-модифицированной продукцией с опаской и повторяет выдумки о «чужеродных генах», можно успокоить тем, что в процессе пищеварения наш организм не расщепляет еду до уровня генов, а потребляет только белки, жиры и углеводы, качество которых одинаково, как в генно-модифицированных, так и в «естественных» продуктах. Которые, как уже было сказано, тоже созданы не вполне естественно, а в результате целенаправленной селекции.

Более того, молекулы ДНК, содержащие гены, взятые из организмов разных типов (они называются рекомбинантными молекулами ДНК) образуются и в «естественных» условиях. Они встречаются в некоторых видах живых организмов.

Определение ГМО

Цели создания ГМО

Методы создания ГМО

Применение ГМО

ГМО - аргументы за и против

Плюсы генномодифицированных организмов

Опасность генетически модифицированных организмов

Лабораторные исследования ГМО

Последствия употребления ГМ продуктов для здоровья человека

Исследования безопасности ГМО

Как регулируется производство и продажа ГМО в мире?

Список международных производителей, замеченных в использовании ГМО

Генетически модифицированные пищевые добавки и ароматизаторы

Заключение

Список использованной литературы


Определение ГМО

Генетически модифицированные организмы – это организмы, в которых генетический материал (ДНК) изменен невозможным в природе способом. ГМО могут содержать фрагменты ДНК из любых других живых организмов.

Цель получения генетически измененных организмов – улучшение полезных характеристик исходного организма-донора (устойчивость к вредителям, морозостойкость, урожайность, калорийность и другие) для снижения себестоимости продуктов. В результате сейчас существует картофель, который содержит гены земляной бактерии, убивающей колорадского жука, стойкая к засухам пшеница, в которую вживили ген скорпиона, помидоры с генами морской камбалы, соя и клубника с генами бактерий.

Трансгенными (генномодифицированными) могут называться те виды растений , в которых успешно функционирует ген (или гены) пересаженные из других видов растений или животных. Делается это для того, чтобы растение реципиент получило новые удобные для человека свойства, повышенную устойчивость к вирусам, к гербицидам, к вредителям и болезням растений. Пищевые продукты, полученные из таких генноизмененных культур, могут иметь улучшенные вкусовые качества, лучше выглядеть и дольше храниться.

Также часто такие растения дают более богатый и стабильный урожай, чем их природные аналоги.

Генетически измененный продукт - это когда выделенный в лаборатории ген одного организма пересаживается в клетку другого. Вот примеры из американской практики: чтобы помидоры и клубника были морозоустойчивее, им "вживляют" гены северных рыб; чтобы кукурузу не пожирали вредители, ей могут "привить" очень активный ген, полученный из яда змеи.

Кстати, не надо путать термины "модифицированный" и «генномодифицированный ». Например, модифицированный крахмал, входящий в состав большинства йогуртов, кетчупов и майонезов, к продуктам с ГМО отношения не имеет. Модифицированные крахмалы - это крахмалы, которые человек усовершенствовал для своих нужд. Это может быть сделано либо физическим (воздействие температуры, давления, влажности, радиации), либо химическим способом. Во втором случае используются химреагенты, которые разрешены Минздравом РФ как пищевые добавки.

Цели создания ГМО

Разработка ГМО некоторыми учеными рассматриваются, как естественное развитие работ по селекции животных и растений. Другие же, напротив, считают генную инженерию полным отходом от классической селекции, так как ГМО это не продукт искусственного отбора, то есть постепенного выведения нового сорта (породы) организмов путем естественного размножения, а фактически искусственно синтезированный в лаборатории новый вид.

Во многих случаях использование трансгенных растений сильно повышает урожайность. Есть мнение, что при нынешнем размере населения планеты только ГМО могут избавить мир от угрозы голода, так как при помощи генной модификации можно увеличивать урожайность и качество пищи.

Противники этого мнения считают, что при современном уровне агротехники и механизации сельскохозяйственного производства уже существующие сейчас, полученные классическим путем, сорта растений и породы животных способны сполна обеспечить население планеты высококачественным продовольствием (проблема же возможного мирового голода вызвана исключительно социально-политическими причинами, а потому и решена может быть не генетиками, а политическими элитами государств.

Виды ГМО

Истоки генной инженерии растений лежат в открытии 1977 года, позволившем использовать почвенный микроорганизм Agrobacterium tumefaciens в качестве орудия введения потенциально полезных чужих генов в другие растения.

Первые полевые испытания генетически модифицированных сельскохозяйственных растений, в результате которых был выведен помидор, устойчивый к вирусным заболеваниям, были проведены в 1987 году.

В 1992 году в Китае начали выращивать табак, который «не боялся» вредных насекомых. В 1993 году генетически измененные продукты были допущены на прилавки магазинов мира. Но начало массовому производству модифицированных продуктов положили в 1994 году, когда в США появились помидоры, которые не портились при перевозке.

На сегодняшний день продукты с ГМО занимают более 80 млн. га сельхозугодий и выращиваются более чем в 20 странах мира.

ГМО объединяют три группы организмов:

oгенетически модифицированные микроорганизмы (ГММ);

oгенетически модифицированные животные (ГМЖ);

oгенетически модифицированные растения (ГМР) – наиболее распространенная группа.

На сегодня в мире существует несколько десятков линий ГМ-культур: сои, картофеля, кукурузы, сахарной свеклы, риса, томатов, рапса, пшеницы, дыни, цикория, папайи, кабачков, хлопка, льна и люцерны. Массово выращиваются ГМ-соя, которая в США уже вытеснила обычную сою, кукуруза, рапс и хлопок. Посевы трансгенных растений постоянно увеличиваются. В 1996 году в мире под посевами трансгенных сортов растений было занято 1,7 млн. га, в 2002 году этот показатель достиг 52,6 млн. га (из которых 35,7 млн. га – в США), в 2005 г ГМО-посевов было уже 91,2 млн. га, в 2006 году – 102 млн. га.

В 2006 году ГМ-культуры выращивали в 22 странах мира, среди которых Аргентина, Австралия, Канада, Китай, Германия, Колумбия, Индия, Индонезия, Мексика, Южная Африка, Испания, США. Основные мировые производители продукции, содержащую ГМО – США (68%), Аргентина (11,8%), Канада (6%), Китай (3%). Более 30% всей выращиваемой в мире сои, более 16% хлопка, 11% канолы (масличное растение) и 7% кукурузы произведены с использованием достижений генной инженерии.

На территории РФ нет ни одного гектара, который был бы засеян трансгенами.

Методы создания ГМО

Основные этапы создания ГМО:

1. Получение изолированного гена.

2. Введение гена в вектор для переноса в организм.

3. Перенос вектора с геном в модифицируемый организм.

4. Преобразование клеток организма.

5. Отбор генетически модифицированных организмов и устранение тех, которые не были успешно модифицированы.

Процесс синтеза генов в настоящее время разработан очень хорошо и даже в значительной степени автоматизирован. Существуют специальные аппараты, снабжённые ЭВМ, в памяти которых закладывают программы синтеза различных нуклеотидных последовательностей. Такой аппарат синтезирует отрезки ДНК длиной до 100-120 азотистых оснований (олигонуклеотиды).

Чтобы встроить ген в вектор, используют ферменты - рестриктазы и лигазы. С помощью рестриктаз ген и вектор можно разрезать на кусочки. С помощью лигаз такие кусочки можно «склеивать», соединять в иной комбинации, конструируя новый ген или заключая его в вектор.

Техника введения генов в бактерии была разработана после того, как Фредерик Гриффит открыл явление бактериальной трансформации. В основе этого явления лежит примитивный половой процесс, который у бактерий сопровождается обменом небольшими фрагментами нехромосомной ДНК, плазмидами. Плазмидные технологии легли в основу введения искусственных генов в бактериальные клетки. Для введения готового гена в наследственный аппарат клеток растений и животных используется процесс трансфекации.

Если модификации подвергаются одноклеточные организмы или культуры клеток многоклеточных, то на этом этапе начинается клонирование, то есть отбор тех организмов и их потомков (клонов), которые подверглись модификации. Когда же поставлена задача получить многоклеточные организмы, то клетки с изменённым генотипом используют для вегетативного размножения растений или вводят в бластоцисты суррогатной матери, когда речь идёт о животных. В результате рождаются детеныши с изменённым или неизменным генотипом, среди которых отбирают и скрещивают между собой только те, которые проявляют ожидаемые изменения.

Применение ГМО

Использование ГМО в научных целях.

В настоящее время генетически модифицированные организмы широко используются в фундаментальных и прикладных научных исследованиях. С помощью ГМО исследуются закономерности развития некоторых заболеваний (болезнь Альцгеймера, рак), процессы старения и регенерации, изучается функционирование нервной системы, решается ряд других актуальных проблем биологии и медицины.

Использование ГМО в медицинских целях.

Генетически модифицированные организмы используются в прикладной медицине с 1982 года. В этом году зарегистрирован в качестве лекарства человеческий инсулин, получаемый с помощью генетически модифицированных бактерий.

Ведутся работы по созданию генетически модифицированных растений, продуцирующих компоненты вакцин и лекарств против опасных инфекций (чумы, ВИЧ). На стадии клинических испытаний находится проинсулин, полученный из генетически модифированного сафлора. Успешно прошло испытания и одобрено к использованию лекарство против тромбозов на основе белка из молока трансгенных коз.

Бурно развивается новая отрасль медицины - генотерапия. В её основе лежат принципы создания ГМО, но в качестве объекта модификации выступает геном соматических клеток человека. В настоящее время генотерапия - один из главных методов лечения некоторых заболеваний. Так, уже в 1999 году каждый четвёртый ребенок, страдающий SCID (severe combined immune deficiency), лечился с помощью генной терапии. Генотерапию, кроме использования в лечении, предлагают также использовать для замедления процессов старения.